Effect of aging on speech features and phoneme recognition: a study on Bengali voicing vowels
نویسندگان
چکیده
The article studies age related variations of speech characteristics of two age groups, in the Bengali language. The study considers 60 speakers in the each age groups, 60– 80 years and 20–40 years, respectively. We have considered different voice source features like fundamental frequency, formant frequencies, jitter, shimmer and harmonic to noise ratio. Cepstral domain feature, Mel Frequency Cepstral coefficients (MFCC) of different voiced Bengali vowels are also analyzed for younger and older adult groups. MFCC feature and Hidden Markov model parameter of different voiced vowels are used to study phoneme dissimilarities measure between two age groups. Age related changes in elderly speech affect the automatic speech recognition performance as was observed in our study, raising the need for specific acoustic models for elderly persons.
منابع مشابه
Improving Phoneme Sequence Recognition using Phoneme Duration Information in DNN-HSMM
Improving phoneme recognition has attracted the attention of many researchers due to its applications in various fields of speech processing. Recent research achievements show that using deep neural network (DNN) in speech recognition systems significantly improves the performance of these systems. There are two phases in DNN-based phoneme recognition systems including training and testing. Mos...
متن کاملبهبود عملکرد سیستم بازشناسی گفتار پیوسته بوسیله ویژگیهای استخراج شده از مانیفولدهای گفتاری در فضای بازسازی شده فاز
The design for new feature extraction methods out of the speech signal and combination of their obtained information is one of the most effective approaches to improve the performance of automatic speech recognition (ASR) system. Recent researches have been shown that the speech signal contains nonlinear and chaotic properties, but the effects of these properties are not used in the continuous ...
متن کاملAllophone-based acoustic modeling for Persian phoneme recognition
Phoneme recognition is one of the fundamental phases of automatic speech recognition. Coarticulation which refers to the integration of sounds, is one of the important obstacles in phoneme recognition. In other words, each phone is influenced and changed by the characteristics of its neighbor phones, and coarticulation is responsible for most of these changes. The idea of modeling the effects o...
متن کاملA Comprehensive Survey on Bengali Phoneme Recognition
SUST, ICERIE Abstract: Hidden Markov model based various phoneme recognition methods for Bengali language is reviewed. Automatic phoneme recognition for Bengali language using multilayer neural network is reviewed. Usefulness of multilayer neural network over single layer neural network is discussed. Bangla phonetic feature table construction and enhancement for Bengali speech recognition is ...
متن کاملPhoneme Classification Using Temporal Tracking of Speech Clusters in Spectro-temporal Domain
This article presents a new feature extraction technique based on the temporal tracking of clusters in spectro-temporal features space. In the proposed method, auditory cortical outputs were clustered. The attributes of speech clusters were extracted as secondary features. However, the shape and position of speech clusters change during the time. The clusters temporally tracked and temporal tra...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- I. J. Speech Technology
دوره 16 شماره
صفحات -
تاریخ انتشار 2013